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Stochastic Disk Dynamo as a Model of 
Reversals of the Earth's Magnetic Field 
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A stochastic model is given of a system composed of N similar disk dynamos 
interacting with one another. The time evolution of the system is governed by a 
master equation of the class introduced by van Kampen as relevant to 
stochastic macrosystems. In the model, reversals of the earth's magnetic field are 
regarded as large deviations caused by a small random force of O(N -1/2) from 
one of the field polarities to the other. Reversal processes are studied by 
simulation, which shows that the model explains well the activities of the 
palaeomagnetic field inclusive of statistical laws of the reversal sequence and the 
intensity distribution. Comparisons are made between the model and dynamical 
disk dynamo models. 

KEY WORDS:  Stochastic; disk dynamo; master equation; large deviation; 
reversal; earth's magnetic field. 

1. I N T R O D U C T I O N  

It is believed that the earth's magnetic field originates in a dynamo action 
in the core, a generation of a self-sustaining magnetic field through the 
interaction of the mechanical motion of a fluid and the flow of an electric 
current in the fluid3 ~-3) One of the most intriguing theoretical problems in 
geophysics is how the dynamo action gives rise to reversals of the earth's 
field, which have occurred for the past 600 million years or much more. 

In view of the intractability of the problem of the magnetohydro- 
dynamic dynamo, an attempt is made to model the geomagnetic 
reversals. Theories of the dynamo suggest that fluid motion in the core is 
in turbulence and forms a number of eddies, which play a main role in the 
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dynamo action. If we assume that the eddies are approximated well by disk 
dynamos with a few degrees of freedom, a stochastic system of interacting 
disk dynamos will give a good picture of the dynamo action in the core. As 
long as the eddies are so located that the effects of their spatial distribution 
can be neglected, being coupled together through a mean-field-like interac- 
tion, and as long as the time evolution is Markovian, the system will be 
described by a class of master equations first introduced by van Kampen (4) 
in a study of stochastic processes of macrosystems. 

He considers a macro-Markovian process Z(t) proportional to the size 
of a macrosystem, and assumes that the transition rate W(X, r) of Z from 
X to X + r  has the form 

W(X, r) = w(eX, r)/e (1.1) 

with a certain function w, where e is a small parameter denoting the inverse 
of the size of the system. Then the normalized process r  is 
governed by a master equation of the form 

Op(t, x)/~3t = (l/e) I dr {w(x - er, r) p(t, x - er) - w(x, r) p(t, x)} (1.2) 

for a transition probability density p(t, x) [=P(r  ~(t) is 
regarded as a motion such that the dynamical motion 

/~(t) ----- ~b(x(t)) (1.3) 

with 

r = f rw(x, r) dr (1.4) 

is perturbed by a small jump-type random force of order of/~1/2 (see Appen- 
dix A). Van Kampen's model together with an approximation scheme in 
the limit of e --* 0 has been developed by Kubo et aL (5) and Suzuki (6) and 
has been applied to many systems. ~ 

As we will see in Section 3, if we take a single disk dynamo with 
viscous coupling as the model of an eddy, the limit equation (1.3) has two 
stable equilibrium points corresponding to the two polarities of the earth's 
magnetic field. The small random force is harmless for a short time inter- 
val, but eventually gives rise to large deviations from one of the equilibrium 
points to a neighborhood of the other, i.e., reversals of the earth's field. We 
will see that this view explains well the palaeomagnetic data. Another view 
has been proposed which regards the apparently irregular reversal sequence 
as "chaos" in dynamical systems, such as Rikitake's model. (8-1~ Here we 
can make an interesting comparison between the two views. 
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Phenomena of large deviations, for example, relaxations from 
metastable states, have been studied by many authors (see refs. 11 and 
references therein; see also refs. 12), who have focused their attention 
mainly on the asymptotics of transition probability functions, eigenvalues 
of generators, means and variances of the first hitting times, and so on. 
One of the main concerns in the present paper, on the other hand, is how 
the flip-flop process on the polarities is derived, which is closely related to 
recent work on asymptotic distributions of occurrence times of rare events 
(see refs. 13 and 14; for mathematical monographs see refs. 15). While only 
a special example is discussed here, it is hoped that a new area for 
statistical physics is being opened up, one not entirely encompassed by the 
setups of refs. 13 and 14. 

I begin with a review of observational and theoretical aspects of the 
:reversal process of the earth's magnetic field in Section 2, which is 
supplemented by Appendix B, giving some details of the dynamical disk 
dynamo models. Section 3 is devoted to the construction of the model and 
discussion of its properties via simulation. Concluding remarks follow in 
Section 4. 

2. OBSERVATIONAL AND THEORETICAL ASPECTS OF 
THE REVERSAL PROCESS 

2.1. Evidence from Palaeomagnetic Studies 

General information can be found in the monographs by Rikitate (~) 
and Merrill and McElhinny (3) or the review by Jacobs, (2) to which I mainly 
refer in the following to avoid citation of much literature. For further 
details see the references therein. 

The earth's field has existed for at least 3000 million years and its 
strength has not significantly differed from its present value. For at least 
the past 600 million years it has been, on the average, approximated well 
by a geocentric dipole whose axis agrees with the earth's rotation axis. 
Reversals between the two polarities, conventionally called the normal 
polarity and the reverse polarity, have occurred at irregular times since the 
Precambrian, more than 600million years ago. The length of polarity 
intervals, time intervals between two successive reversals, varies from 
0.02 million years, the minimum detectable length, to several tens of 
millions of years. Reversals are completed in 103-104 years, and during 
transitions the field, after a considerable decrease in intensity, is dominated 
by the nondipole components. Phenomena called excursions, reminiscent of 
aborted reversals, have also been observed. The frequency of reversals 
averaged over the period 10-50 million years fluctuates widely with the 
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change of geological eras, which gives rise to the phenomenon of polarity 
bias. 

More quantitative information is available for recent periods on 
temporal variations (ref. 16; ref. 3, Section 5.3) and intensity distribution 
(ref. 17; ref. 3, Section 6.3): 

P1. The number N(t) of reversals up to time t in the past 80 million 
years is well described by a Poisson process. A mild nonstationarity is 
observed; the intensity function 2(0  = E[N(t)] has the form Zo + ~-1 t where 
21 increases at a rate of 0.05 per million years. In the past 10 million years 
stationarity may be assumed and 21~  5x  10-6/year. No difference of 
statistical significance is observed between two sequences obtained by 
choosing either the normal or the reverse polarity. 

Oscillations of the magnetic field with a period of 8000-9000 years and 
a striking discontinuity of 2(t) around 45 million years ago quoted in ref. 2 
are now regarded as highly tentative (ref. 16; ref. 3, Section 4.1.3). 

P2. The density function f of the intensity of the dipole moment for 
the past 5 million years almost satisfies a symmetry of the two polarities 
suggested by that of the magnetohydrodynamic equation. Taking the 
dipole moment y to be positive or negative according as the polarity is 
normal or reverse, the following form, expressed as a sum of two truncated 
Gaussian distributions, is compatible with palaeomagnetic data: 

f(y)=NlI(_oo._v~lg(y+ yo;~o)+N2IEy2oo)g(y-yo;ao) (2.1) 

where g is the Gaussian distribution 

g(y; 0") = (2~0 "2) 1/2 exp( -- y2/202) (2.2) 

and I,~ is the indicator function of the set A [ IA(y )=  1 if yeA and = 0  if 
yeA]. The normalization constants N~, N 2 are chosen so that the 
integrals of f on positive and negative half-lines become 1/2. The 
parameters Y0 and ao are estimated to be 8.67_+0.65 x 1022A m 2 and 
3.63+_0.75x 1022Am 2 with 95% confidence, respectively. The cutoff 
points Yl, Y2 appear because samples in transient periods are omitted in the 
statistical analysis. Only those samples are taken into account that have the 
associated virtual geomagnetic pole 2 with latitude greater than 45 ~ Under 
the assumption that y~ =Y2, their maximum likelihood estimates are 
2.75x 1022Am 2, about 30% ofyo.  

2 When the geomagnetic field is observed at one point on the surface of the earth, we can. 
imagine a geocentric dipole which would produce the observed field at the point. The 
fictitious dipol~ is called the virtual dipole moment, and the intersection of its axis and the 
surface of the earth determines the virtual geomagnetic pole. 
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A closer examination of the data reveals a disagreement between 
yl and Y2 (the maximum likelihood estimates are 1.84x 10 22 and 
3.11 x 1022A m 2, respectively), suggesting a slight asymmetry between the 
two polarities. The nondipole components give a contribution proportional 
to y~/, the product of the dipole moment y and a standard normal random 
variable t/, to the virtual dipole moment. The proportionality constant is 
estimated at about 0.2. 

When we refer to the properties P1 and P2 in the following, we 
consider the period of the past several million years unless otherwise stated: 
(Pl)  the number of reversals NU) is a stationary Poisson process, and (P2) 
the density function f of the dipole intensity has a symmetric double 
Gaussian distribution (2.1). 

2.2. Reversal Models  Based on Dynamo Theories 

A full account of the above properties P1 and P2 based on 
magnetohydrodynamics is still beyond our reach, although the presence of 
reversals has been demonstrated numerically under some additional 
,assumptions. (ls~ Studies on the dynamo action of systems with a few 
,degrees of freedom, initiated by Bullard, (19'2~ assume one or a few disk 
,dynamos consisting of rotators, brushes, coils, etc. Each disk dynamo may 
represent an eddy in the earth's core, but it will be unnecessary to imagine 
counterparts of such accessories as the brushes or the coils, because 
ordinary differential equations governing the systems can be derived from 
the magnetohydrodynamic equations by truncation, (2~) just as in the 
Lorenz system. ~22) 

The single disk dynamo due to Bullard (19'2~ does not give rise to 
reversals. But the coupled two-disk dynamos due to Rikitake (8) as well as 
the shunted single-disk dynamo with an impedance between the brush and 
the coil due to Malkus ~23) and Robbins (24) exhibit chaotic 
reversals. (s-1~ A great nonuniformity in the frequency of reversals 
averaged over 10 million years, reminiscent of those of the earth's field, is 
observed in these two models. (24'25) However, there are qualitative differen- 
ces between the properties of the models and the observed facts; the earth's 
field does not show growing oscillations preceding a reversal, contrary to 
the prediction by the models (see Fig. 1). Moreover, as stated in Sec- 
tion 2.1, the oscillations of the field are now regarded as highly tentative, 
and no great nonuniformity has been observed for the past 80million 
years. Numerical calculations in Appendix B tell us that the above proper- 
ties P1 and P2 are unlikely to be satisfied at the same time by the 
dynamical disk dynamo models. 

There are many attempts based on theories of stochastic processes. An 
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Fig. 1. Time plot of xl(t) of the Rikitake model (B.1) for # = 1, K=2. 

introduction is omitted here of the descriptions in terms of combinations of 
the dipole and the nondipole fields expressed by simple stochastic processes 
(ref. 2; ref. 3, Section 9.2), because they will be of little interest from a 
statistical mechanical point of view, though useful in practical situations. 
Parker ~26) and Levy ~27) have proposed the idea that reversals occur when 
the eddies in the earth's core, through random processes, arrive at a certain 
critical configuration. The property P1 suggests that a sequence of critical 
and noncritical configurations assumes a strong independence, forming, for 
example, a sequence of Bernoulli trials. (28) Unfortunately no justification 
has been given to the independence except for the case where the eddies 
move independently. Kono ~29) has suggested that the dipole-dipole interac- 
tion between the eddies is a clue to understanding the reversal phenomena; 
the properties P1 and P2 are shared by a system of several interacting 
dipoles, similar to the kinetic Ising model with mean field interactionJ 3~ 
His idea will be developed in the present paper by introducing a dynamo 
action which sustains the dipole fields of the eddies. 

3. STOCHASTIC  DISK D Y N A M O  M O D E L  

3.1. Mode l  Master  Equation 

Let us consider a system composed of N similar disk dynamos 
interacting with one another. As illustrated in Fig. 2, each disk rotates 



Stochastic Disk Dynamo 

u s h  

c o i l  ~ _ ~  

Fig. 2. Schematic diagram of single disk dynamo due to Bullard. (19J 
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about its axis in a field parallel to the axis, and current drawn from two 
brushes, one on the periphery and one on the axle of the disk, passes 
through a coil to produce the magnetic field. We may describe the system 
using two macrovariables, the total magnetic field produced by the currents 
and the total angular momentum of the disks. They can be substituted for 
an algebraic sum Z1 of the currents in the coils and an algebraic sum Z2 of 
the angular velocities as long as the disks are assumed to be so located that 
the effects of their spatial distribution can be neglected and their axes are 
parallel to one another. We put Z =  (~"~1, "~2), and by ~ = (~1, ~2) we denote 
a vector normalized by N: ~ = S /N .  

We next determine the transition rate W(X, r) of (1.1). As stated 
in Section 1, ~ converges in the limit of N ~  ~ to certain x = ( x l , x 2 )  
governed by a deterministic equation, which, we suppose, agrees with 

L 2 1 =  - R x l  + M x l x 2 ,  C5c2= - k x 2 + G - M x  2 (3.1) 

for a single disk dynamo with a viscous coupling term kx2. (9) Here L is the 
self-inductance and R the resistance of the circuit, M is the mutual induc- 
tance between the coil and the disk, C is the moment of inertia of the disk, 
and G is the couple driving it. For  notational convenience we introduce 
dimensionless variables 4'1, ~ ,  X'l, x~, and t' defined by 

yf l  = (M/G)  1/2 Xl, 

~'1 = (M/G)  '/2 ~1, 

x'~ = ( M C / G L  ) 1/2 x2, 

~'2 = ( M C / G L )  '/2 ~2, 

t' = ( G M / C L  ) 1/2 t 
(3.2) 
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and then drop the prime on ~'1, ~ ,  X'l, x~, and t'. Then (3.1) becomes 

21 = - # x l  + x l x 2 ,  22 = - v x 2 +  1 - x ~  

where the dimensionless parameters # and v are given by 

# = (CR2/GML) 1/2, 

The limit equation (3.3) is written as 

Xl = --#X1 "[- N 1X1X 2, 

(3.3) 

J(2 = - v X 2 + N - 1 ( N 2 - X ~ )  (3.5) 

if we use an extensive variable X - ( J ( 1 ,  J tz2)  = Nx. In the stochastic model, 
to the term - # X 1  in the rhs of the first equation of (3.5), for example, 
there will correspond a rate Wl(X,r  ) which has a peak at r =  
(-sgn(J(1) ,  0) and amounts to # IX1[ when integrated over all r. Assuming, 
for simplicity, a Gaussian form for WI, we can write 

WI(X, r ) =  # IX1[ g(rl + sgn(Xl); 0.1) g(r2; 0.2) 

with suitable parameters 0.l, 0.2. Here sgn(X1) denotes the sign of XI, and 
the Gaussian function g is defined by (2.2). By a similar discussion for the 
other three terms in the rhs of (3.5), we have 

W(X, r ) = #  IX1[ g(rl + sgn(X1); 0.1) g(r2; 0.2) 

+ v IXRI g(rl ;0.1) g(r2 + sgn(X2); 02) 

+ N-1  [X1X2] g ( r l -  sgn(J(1X2); 0.1) g(r2; 0.2) 

+ N - 1 ] N 2 - X ~ [  g ( r l ; 0 . 1 ) g ( r 2 - s g n ( N 2 - X ~ ) ; 0 . 2 )  (3.6) 

This kernel W clearly has the property (1.1) with 

w(x, r ) = #  ]Xl[ g(rl + sgn(xl); 0.x) g(r2; 0.2) 

+ v hx2l g(rl; 0.1)g(r2+sgn(x2);0.2) 

"~ IXlX2[ g(rl -- sgn(xlx2); 0.1) g(r2; 0.2) 

+ I I -x21  g ( r l ; 0 . 1 ) g ( r z - s g n ( 1 - x 2 ) ; 0 . 2 )  (3.7) 

and e =  1/N. It is easy to check that the limit equation (1.3) with (1.4) 
agrees with (3.3). Thus we have obtained our model given by the master 
equation (1.2) with (3.7). 

We have to infer the asymptotic behavior of ~ as N ~  oe by 
simulations with relatively small N (~< 15), mainly due to the restriction of 
computational time. Big jumps occurring frequently for smglt N (~<3) 

v = (Lk2/GCM) 1/2 (3.4) 
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make it difficult to obtain statistically stable results, hence concealing the 
dependence on N. So in the following we will simulate not only the jump 
model ~, but also a diffusion model ~ given by a stochastic differential 
equation 

dr = E - # r  + ~',(t) ~ ( t ) ]  d t +  ~1/~ dw~(O 

d~2(t ) = {-vr  ) + 1 - ~ l ( t )  2 ] d t +  e 1/2 dw2(t ) 
(3.8) 

with a small random force. Here (w1(t),  w2(t))  is a two-dimensional 
Brownian motion, and e = 1IN. 

3.2. M e t h o d  of  S imulat ion 

When #v < l, which we shall study below, (3.3) has three equilibrium 
points, S(0, v-X), F+(2,/~), and F ( - 2 , # ) ,  where 2 = ( l - / ~ v )  m. The 
point S is a saddle point, and F+ and F are stable points with charac- 
teristic roots 

s = - v / 2  +_ (v 2 - 822)1/2/2 (3.9) 

As t--,  oe, (Xl( t) ,  x2( t ) )  approaches F+ ,  F , or S according as Xl(0)>0, 
�9 X'I(0 ) < 0, o r  X l ( 0  ) = 0. (9'31) 

As will be seen later by simulation, the density function of the sojourn 
time of the current ~1 has peaks around x 1= _+2 for large N, and 
x 1 = +0.32 indicate, in view of the property P2 in Section 2.1, the boun- 
daries of the two polarities. Hence we may divide the phase Xx - x 2  plane 
into three regions as illustrated in Fig. 3: the reverse polarity Xl ~< -0.32, 
the transient region -0 .32 <x~ <0.32, and the normal polarity x~ 90.32. 
To fix ideas, ~ is supposed to be initially in the reverse polarity. ~ will go 
into the normal polarity and back to the reverse polarity and so on. 
Corresponding to this sequence we define the first hitting times {ri} of the 
two polarities as follows: 

"C0=0 

%, l = i n f { t > z 2 , - 2 ;  ~1(t))0.32} (3.10) 

z2n =inf{t  > r2n_~; ~t(t) ~< -0.32}, n )  1 

T]he polarity intervals of the normal and the reverse polarities are defined 
by {r2, ,-r2,_1} and { % , + ~ - r 2 ,  } ( n ) l ) ,  respectively. 3 Time intervals 

31nstead of {zk--Tk 1} it would be better to use {r~-r~-_l} with z~, in (3.11). But the 
differences {zk-  r2} are negligible compared with {rk--*k-1} in the statistical sense. 
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Fig. 3. Schematic division of the xl-x2 plane: the reverse polarity Xl ~< -0.32, the transient 
region -0.32 < x~ < 0.32, and the normal polarity 0.32 ~< x~. The polygonal line represents a 
sample path of ~, and rn, r'n are the first hitting time and the last exit time of the polarities 
defined by (3.10), (3.11). F_, are two stable equilibrium points of (3.3). 

spent during transitions are given by { % - ~ ' , }  (n ~> 1) where the r', are the 
last exit times from the two polarities defined by 

r~n l = s u p { t < % ~  1 ;~1( t )~<-0 .32}  
(3.11) 

z~  = sup{t  < ~2n; ~l(t) >~ 0.32}, n~>l  

Dur ing  a short  time interval At, ~ starting at x makes a transit ion to 
the d(sr)  ne ighborhood  of x + er with probabil i ty  e -1 w(x, r ) A t  dr, so that  
we can simulate the process ~ as follows. First we take mutual ly indepen- 
dent  two-dimensional  r andom variables c~ and/3 such that  e assumes values 
( - s g n ( x l ) ,  0), (0, - sgn (x2 ) ) ,  (sgn(xlx2),  0), (0, sgn(1 - x ~ ) ) ,  and (0, 0) 
with corresponding probabilit ies 

# IXll Jt/~, v Ix:l 3t/a 

Ix~x21 At~e, I1 - x21 3t/e 

1 - A t { #  Ix1[ + V Ix21 + [xlx2l + 11 - x Z l  }/e 

and such that /~ is Gaussian having mean (0, 0) and covariance matr ix 
(ai6~). For  a realized value (a ,b )  of (c~,/3), we move r by ( a + b ) E  if 
a r (0, 0), and put  the clock forward by At. The method for the simulation 
of the diffusion model  ~ of (3.8) will be obvious. 
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3.3. Results of  S imula t ion  

To simplify the discussion, we fix the parameters  #, o1, and cr 2 to be 
0.3 th roughou t  this subsection because the model  seems to depend on these 
parameters  less sensitively than on v. 

The step functions hN(t ) in Fig. 4 [ (a)  N = 5 ,  v=0 .5 ,  (b) N =  15, 
v = 0.5] give approximate  density functions of  normalized polari ty interval 
t, obtained from the frequency distributions of  polari ty intervals in 
simulated reversal sequences. In both  cases hN(t) fits with the exponential  
fimction e - t ,  suggesting that the reversal sequences are Poissonian. This 
point  has been examined more  quanti tat ively by using another  test of  
goodness of  fit for Poisson processes(32): if a reversal sequence is observed 
for a fixed time interval [0, To] and n reversals occur at T1, T2,..., T~ 
in (0, To), then T]To ( i = 1 ,  2 . . . ,n )  are independently and uniformly 
distributed over (0, 1), which is checked by the two-sided K o l m o g o r o v -  
Smirnov test. In each case of N, 10 sample sequences were generated, and 
the Poisson hypothesis  was always retained at the 5 % level of significance, 
except for one sequence with N =  15. The hN(t) with N =  5 in Fig. 4a has a 
dip for t < 0.2, which always happened for the other  nine sample sequences. 
On  the other  hand, no systematic deviation from the exponential  function 
was observed for N =  15. These facts will allow us to assume a better fit to 

', " ', " " i ~ ' ' ~  " ~ i " i i  i', 

' , ' , l l ' , ' , : ' , ' , l ' , , ~ i ' , ~ ' ,  ~ ~ ',r, l l i l ' , ' , ; l l ; i : :  ~ ~ ~ " 

I I I I I I I i ~ , ~ ~ I I " i I I " I I i I i I I [ I ' ' I  ' ,Ii ' r ' , l l  I i i ' , I i i ' , I i I , ~ I I I I i [ ~ I - - ~  ii m 

i 2 B 4 t 1 ) _, ~ t 

Fig. 4. Step function hN giving approximate density functions of polarity intervals for (a) 
#=0.3, v=0.5, o 1 =0"2=0.3, N=5,  and (b) #=0.3, v =0.5, al =a2 =0-3, N= 15. The hN are 
obtained as follows: for t c [i/10, (i + 1)/10), i= 0, 1, 2 ..... hu(t ) = 10 multiplied by the relative 
fre, quency of polarity intervals in [mi/lO, re(i+ 1)/10), where m is the sample mean giving a 
unit of time axis. The decreasing function in the figure is the exponential function e t. The 
numbers of polarity intervals used for the analyses are (a) 176 and (b) 128. 

822/53/1-2-3 
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Fig. 5. As in Fig. 4, but for (a) #=0.3, v=0.1, a I=~r2=0.3, N=5, and (b) ,u=0.3, v=0.1, 
a~ = cr 2 = 0.3, N = 20. The numbers of polarity intervals used for the analyses are (a) 290 and 
(b) 278. 

Poisson processes for larger N. This point can be checked more quan- 
titatively in the diffusion model (see below). 

The asymptotic behavior for N--* ~ depends, however, on the 
parameter v. When v is changed from 0.5 to 0.1, the intensity of hu(t ) for 
smaller t (~<0.2) grows as N increases, and finally exceeds substantially the 
expected value of the exponential function (Fig. 5). 

This phenomenon may be interpreted in terms of the following 
property of the dynamical equation (3.3) actually governing ~ for large N. 
The characteristic roots (3.9) indicate that the attractive forces of the 
points F+ are weak for small v, implying a frequent appearance of 
located near the polarity boundaries (+0.32, x2) with a large, negative x2. 
By the first equation of (3.3), we see that the x2 axis attracts such 
strongly, giving rise to reversals with relatively short polarity intervals. This 
interpretation is supported by the observation that the percentage of rever- 
sals occurring on the negative half-plane x2 < 0 increases from about 20% 
to almost 100% as v decreases from 0.5 (Fig. 4b) to 0.1 (Fig. 5b). 

The density function of the sojourn time of ~t(t) depends on v and N 
in a rather simple way; the double Gaussian distribution (2.1) gives a good 
approximation for large N and v (Fig. 6). The density function of the time 
% -  ~', spent during reversals is unimodal and its rise becomes sharper as v 
or N increases (Fig. 7). 



Stochastic Disk Dynamo 31 

 iiiiiii!!iii!!i!i!i!iiii!i!  
- 1 ,1 x ~  

q 

;i! ~ !ill 

~i ,~ i ~!! 
; I :  :1 i l 

~i!ii !i:' ~: 

xi 
Fig. 6. Step functionfu giving the approximate density functions of the sojourn time of ~(t)  
far (a) #=0.3, v=0.1, a~=a2=0.3 , N=5,  and (b) #=0.3, v =0.5, ax =a2=0.3, N=15. The 
JN(X) are obtained as follows: for xe  [i/10, ( i+ 1)/10), i=0,  _+1, +2,..., fu(x)= 10 multiplied 
by the proportion of the sojourn time of ~ on [i/10, (i+ i)/10). The bimodal functions are 
given by (2.1) where Yo and a0 are the sample mean and standard deviation of the sojourn 
time of [~l(t)[. 

The  di f fus ion m o d e l  ( is qua l i t a t ive ly  the s ame  as ~ in  the a sympto t i c s  

of the above-d i scussed  three  quan t i t i es .  The  conve rgence  of reversal  
sequences  as N--* 0o to P o i s s o n  processes  w h e n  p = 0 . 3 ,  v = 0 . 5  can  be 

checked m o r e  clear ly  t h a n  in  the case of  ~. Of  10 sample  sequences  wi th  
N =  1 the P o i s s o n  hypo thes i s  was rejected wi th  a 5 % level of s ignif icance 

::i :IHI 
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Fig. 7. Step functions giving approximate density functions of time spent during transitions 
{r~--z',} for (a) #=0.3, v=0.1, a l =a2 =0 .3  , N=5,  and (b) #=0.3, v=0.5, ~1=a2=0.3, 
N=  15. The step functions are constructed in the same manner as hN in Fig. 4. 
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by two samples and with a 10% level by one sample. On the other hand, 
the hypothesis was always retained with a 10 % level of significance by 10 
sample sequences with N = 15. 

3.4. Comparison w i t h  the Observed Facts 

First we give estimated values of geophysical parameters. In Eq. (3.1), 
L/R represents the free decay time of the magnetic field, being of the order 
of  10 4 years (ref. 3, Section 7.4.3), so that the unit of time I~L/R becomes of 
the order of # x 104 years [-see (3.2)]. Values of the parameter # range from 
10 3 to 10. (l~ The decay time (1/v)p(L/R) years of the disk may be 
equated with that of the velocity of the fluid in the core due to viscosity. 
Estimating the latter time scale by (radius of the core)2/kinetic viscosity 
and using values 3 • 106 m for the radius and 10 - 6  to  10 5 m 2 sec -1 for the 
viscosity of the core (ref. 3, Section 7.1), we have ~/v = 3 • 10 - 4  to 3 • 107. 
These restrictions on # and v have been fulfilled in Section 3.3. 

For  the cases with p = 0.3, v = 0.5, and al = ~2 = 0.3 discussed in Sec- 
tion 3.2, values of N =  1(~11 together with L/R ~-5000 years explain well 
the observed facts P1 and P2. The Poisson property of the reversal sequen- 
ces as well as the double Gaussian form of the intensity distribution are 
satisfied. The average polarity length is about 0.2~3.3 million years. The 
parameters Yo and ao are 0.82-0.83 and 0.37--0.36, respectively; the ratio 
ao/Yo agrees with the observed value 3.63/8.67. The average time spent 
during transitions is about 5 • 103 years, of order of the magnitude of the 
observed value 103-104 years. 

Better choices of the parameters/~, v, a l ,  ~ ,  and N may be possible, 
but too small v will not be adopted because it will violate, as we have seen 
in Section 3.3, the Poisson property of the reversal sequence. Our model in 
turn gives a restriction on the value of the viscosity of the core, which is 
known only vaguely. 

The rest of the properties in Section 2.1 may be discussed in the 
present framework; the nonstationarity of reversal processes and the asym- 
metry between the two polarities may be interpreted by the time depen- 
dence of p and v and by statistical fluctuation, respectively. But I refrain 
from going into these too geophysical details. 

4. C O N C L U D I N G  R E M A R K S  

I have shown that the stochastic disk dynamo model written as (1.2) 
with (3.7) can explain well the observed facts P1 and P2 of Section 2.1. The 
contribution of this work, however, lies in the presentation of a general 
view of the reversal phenomena of the earth's field rather than in the 
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construction of the model or discussion of its physical contents. The 
present result together with that of Kono (29) suggests that the reversals can 
be considered as phenomena of large deviations in stochastic systems 
driven by small, random forces, physically in systems where 10-20 eddies in 
the earth's core evolve stochastically, coupled together through a mean- 
field-like interaction. This view gives a better account of the observed facts 
than the view which regards the reversal phenomena as "chaos" in 
dynamical disk dynamo models. 

The present view should be reinforced and developed further. First we 
need to answer theoretically what kind of flip-flop process on the two 
polarities is expected asymptotically as N--, oo. This can be done most 
directly by investigating the distribution of polarity intervals {rk--~k ~} 
defined in Section 3, say 

K 

lira K -j  ~ IA(~k--~ ~ 1) 
K ~ c o  k ~ l  

Occurrences of rare events such as polarity reversals are expected to 
constitute Poisson processes. The simulation in Section 3 shows that the 
asymptotic Poisson property is not necessarily acquired, if, for example, v 
is too small. In other words, the asymptotics of the flip-flop process seems 
to behave in a more complex way than anticipated from the asymptotic 
exponentiality of the first exit times from domains containing a stable 
point/TM Second, we need to construct the model starting from 
assumptions on mutual interaction between the eddies, as is done for the 
kinetic Ising model ~3~ or the Maxwellian gas model. (33) The constructions 
not only give a vivid physical picture of the geodynamo, but also pave the 
way for a discussion of the stochastic behavior of the earth's dipole as a 
vector, which has been intensively studied recently. (34) 

APPENDIX  A. J U M P - T Y P E  STOCHASTIC  DIFFERENTIAL 
EQUATION C O R R E S P O N D I N G  TO (1.2)  

In d-dimensional jump-type stochastic differential equations, the role 
of a random force is played by a Poisson random measure v characterized 
by the following properties [in this Appendix, v is distinct from the 
parameter in (3.4)]: for disjoint subsets Ai ( i=  1, 2,...) of [0, oo)x R d, v(Ai) 
are mutually independent Poisson random variables and satisfy the coun- 
table additivity v(Ui A~)= ~2i v(Ai). We assume that the intensity function 
E[v(dt x du)] has the form dt x du. Let us consider a jump-type stochastic 
differential equation 

d~(t) = b(~(t)) + ~ dRfd C(~, U) Y(e -1  dt x du) (A.1) 
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for d-dimensional vector functions b and c. Here g ( , ) =  v ( * ) -  Ely(*)] .  If 
we put 

w(x, r) = f Idr(C(X' U)) du/dr (A.2) 

where I A is the indicator of the set A, and if b is related to e as 

b(x) = f c(x, u) du (A.3) 

then the probability density function P(~(t)e dx)/dx satisfies the master 
equation (1.2). The above fact can be proved by using It6's formula for 
jump-type stochastic differential equations. (3s,36) 

The smallness of the second term on the rhs of (A.1) is certified from 

[; E; ] E ~ e(~,u)~(e l d t xdu )  =eE le(~,u)12dtdu =O(e)  (A.4) 

More precisely, ~(t) converges to x(t) of (1.3), and e 1/2(~.(t)-x(t)) does 
to a Gaussian process 

dq(t) = B(x(t)) r/(t) dt + D(x(t))  dw(t) (A.5) 

with 

B~ (x) = c~bi (x)/c~xj (A.6) 

Dik(x ) Djk(x) = f ci(x, u) Ci(x, u) du (A.7) 
k 

which can be proved by using a convergence theorem of stochastic differen- 
tial equations (ref. 36, p. 338, Theorem 3, and pp. 238, 273). I do not go 
into the details here. See also refs. 6 and 37 for other proofs of the above 
convergence theorem. 

APPENDIX B. STATISTICAL PROPERTIES OF THE 
D Y N A M I C A L  DISK D Y N A M O S  

We investigate whether the models by Rikitake (s) and by Malkus (23) 
and Robbins (24) satisfy the statistical properties P1 and P2 discussed in 
Section 2.1. 
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The Rikitake model consists of two similar disk dynamos coupled so 
that the current from each feeds the coil of the other (Fig. 8), and is deter- 
mined by differential equations with a parameter/t, 

2 1 =  --],lXl-}-X2X3, 2 2 =  --~X2 q-X4Xl, X3=) f4=  I - - X l X  2 (B.1) 

in a dimensionless form. Here x~ and x2 represent the currents of the two 
circuits, and x3 and x4 are the angular velocities of the two disks. The 
difference of the angular velocities x 4 - x 3  is a constant of motion, which 
we shall conveniently write - # ( K  z -  K-2), and (B.1) is reduced to a three- 
dimensional x ~ x 2 x  3 system with a variable parameter K. The reduced 
system has two unstable equilibrium points (K,K I,#K 2) and 
( - K ,  - K  ~, #K2). A trajectory encircles one of the equilibrium points 
several times and switches rapidly to encircle the other, without being cap- 
tured by either. The/~-K plane is divided into periodic and chaotic regimes 
according to the mode of the switching phenomena (see ref. 25 for a phase 
diagram). In the chaotic regime a narrow zone called the minimum entropy 
regime is observed where sequences show great nonuniformity in reversal 
frequency, mimicking well the geodynamo activity. (2s) Estimates of 
geophysically plausible # values range from 10 3 to 10, and the value of K 
adopted in previous studies (~~ is of order unity. Of (~t, K) in the chaotic 
regime, we discuss the case (R1) # =  1, K=2 ,  (1~ and, as an example lying 
very close to the minimum entropy regime, the case (R2) # = 1.95, K =  3. 
Figure 1 shows the behavior of x~( t ) ,  where growing oscillations result in 
reversals. From this figure polarity intervals may be defined by two 
successive zero crossing points of Xl(t). As a unit of time we take 
/ / •  10 4 years (see Section 3.4). 

X3 X4 

Fig. 8. Schematic diagram of the Rikitake model. 
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R1. A sequence is analyzed which spans about 10 million years and 
contains 176 reversals. The polarity intervals are nearly integral multiples 
of a mean period To ( ~ 0.03 million years) of the oscillations. The root 
mean square of T i -  To (i = 1, 2,...) is less than about 1% of To, where Ti is 
the average period of oscillations in the ith polarity interval. Furthermore, 
the relative frequency of polarity intervals counted in units of T o 
approximately follows an exponential distribution with mean 0.1 million 
years (Fig. 9a). These two facts show that the reversal process is roughly a 
sequence of Bernoulli trials when viewed in units of To. If the effects of the 
spatial distribution of the two disk dynamos are neglected, the total 
magnetic field produced by the system is proportional to xl+x2.  
Simulation of the density functions of its sojourn time (Fig. 10a), however, 
is not compatible with the double Gaussian distribution (2.1). 

R2. A sequence is analyzed which spans about 70 million years and 
contains 139 reversals. The quantization of polarity intervals of mean 
period To (~-0.04 million years) of oscillations is still observed, but the 
density function of polarity intervals deviates substantially from the 
exponential function with mean 0.6 million years (Fig. 9b). The density 
function of the sojourn time of xl +x2 has distinct maxima around K 
and/or - K .  But it becomes hard to realize the equal weight of the two 
polarities (Fig. 10b) as a result of the nonuniformity in reversal frequency, 
especially for a shorter time span, say, several million years. 

2.3n2o 

1 

~ . 

2 ~ ~ t 2 3 ~ t 

Fig. 9. Step functions giving approximate density functions of polarity intervals of the 
Rikitake model for (a) p = 1, K =  2 and (b) p = 1.95, K = 3. The step functions are constructed 
in the same manner  a s  h u in Fig. 4, but  the step width is To, the mean cycle of oscillations. 
The time axis is normalized by the mean of polarity intervals. The numbers  of polarity inter- 
vals used for the analyses are (a )96  and (b) 114. 
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Fig. 10. Step functions giving approximate density functions of the sojourn time of 
x~(t) + x2(t ) of the Rikitake model for (a)/~ = 1, K = 2, (b) ,u = 1.95, K =  3. 

The Malkus Robbins model is obtained by adding a shunt across the 
external circuit to the single-disk dynamo and by assuming the resistance 
and inductance of the brush on the periphery of the disk (Fig. 11). We will 
treat the case that the shunt has no inductance, which Robbins has studied 
most extensively. The differential equation governing the model is written 
in a dimensionless form as 

X I = O ' ( . X ' 2 - - X l )  , 2 2 = X 3 X  1 - - X 2 ,  2 3 - ~ G - - X l X 2 - - v x  3 (B.2) 

with three parameters a, G, and v. Here xl and x2 are currents flowing in 
the circuit and the disks, respectively, the latter of which' is responsible for 
tile observable field (the poloidal field). The variable x 3 is the angular 

X 3 

h u n t  

Fig. 11. Schematic diagram of the Malkus Robbins model. 
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velocity of the disk. By a simple transformation -xl--*xl ,  - x 2 ~ x 2 ,  
-x3 + G/v---,x3, (B.2) is reduced to the canonical form of the Lorenz 
system. (22) For G just above Go=aV(a+v+3) / (rr - l -v )  almost any 
trajectory exhibits chaotic reversals. There exists a subcritical region 
G1 < G < Go where some of the trajectories tend asymptotically to the 
stable equilibrium points (+_(G-v) ~/2, +__(G-v)l/2,1) of (B.2), while 
others tend to the so-called strange attractors, showing chaotic reversals 
indefinitely. (38) The number of oscillations between reversals fluctuates 
widely when G comes near G~ from above, which leads Robbins to assert a 
corroboration of the model's relationship to the geodynamo. 

We have taken ~ = 10 and v = 8/3, giving Go-~ 65.97 and G 1 -  64.16, 
and examined the range of 64.11 < G < 74.67. The quantization of polarity 
intervals in units of the oscillation period is observed. Our concern is the 
density function of polarity intervals measured in units of the period and 
that of the sojourn time of Xl(t). The two functions are qualitatively similar 
to those shown in Figs. 9a and 10a except for a neighborhood U(G1) of 
G~.4 In U(G~) the characteristics of Figs. 9b and 10b are found, which we 
have confirmed only incompletely because the size of U(G~) is too small. 

Our study suggests that the dynamical disk dynamo models due to 
Rikitake and Malkus and Robbins are unlikely to satisfy the properties P1 
and P2 at the same time. It will be interesting to see whether the situation 
is improved by changing the values of the parameters or by using more 
complex dynamical disk dynamo models. (4~ A success of a simple 
dynamical model of the solar dynamo/41) will give us a clue to a solution of 
the fundamental problem whether or not mechanisms of the dynamo action 
are different in the sun and in the earth. 

4 An exponential law for the polarity length in the Lorenz model was found by Aizawa. (39) 
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